Parametrizing Real Even Nilpotent Coadjoint Orbits Using Atlas

نویسنده

  • PETER E. TRAPA
چکیده

Suppose GR is the real points of a complex connected reductive algebraic group G defined over R. (The class of such groups is exactly the class treated by the software package atlas.) Write g R for the dual of the Lie algebra of GR and N R for the nilpotent elements in gR. Then GR acts with finitely many orbits on N via the coadjoint action, and it is clearly very desirable to parametrize these orbits in a way that atlas can manipulate. For instance, it is definitely not sufficient to produce a list of tables of such orbits for, say, G simple. The purpose of these notes is to describe such a parametrization of even nilpotent orbits. This can be extracted from [ABV, Chapter 20], but we offer a more easily accessible treatment here and make the atlas-based algorithms explicit and effective. The parametrization is in terms of certain closed orbits of a symmetric group K on partial flag varieties P for G. Since the geometry of K orbits on partial flag varieties is “dual” to the study of translation families of Harish-Chandra modules with singular infinitesimal character, the description of K\P is of independent interest. We give complete details in Section 2 before turning to the parametrization of nilpotent orbits in Section 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADMISSIBLE NILPOTENT ORBITS OF REAL AND p-ADIC SPLIT EXCEPTIONAL GROUPS

We determine the admissible nilpotent coadjoint orbits of real and p-adic split exceptional groups of types G2, F4, E6 and E7. We find that all Lusztig-Spaltenstein special orbits are admissible. Moreover, there exist nonspecial admissible orbits, corresponding to “completely odd” orbits in Lusztig’s special pieces. In addition, we determine the number of, and representatives for, the non-even ...

متن کامل

Nilpotent Orbits and Complex Dual Pairs

τ(w)(x) = 〈x(w), w〉, w ∈ W, x ∈ g ⊆ End(W ), and similarly for τ ′. Our main theorem describes the behaviour of closures of nilpotent orbits under the action of moment maps. It is easy to see that for a nilpotent coadjoint orbit O ⊆ g∗ the set τ ′(τ−1(O)) is the union of nilpotent coadjoint orbits in g′. It turns out that it is a closure of a single orbit: Theorem 1.1 Let O ⊆ g∗ be a nilpotent ...

متن کامل

ADMISSIBLE NILPOTENT COADJOINT ORBITS OF p-ADIC REDUCTIVE LIE GROUPS

The orbit method conjectures a close relationship between the set of irreducible unitary representations of a Lie group G, and admissible coadjoint orbits in the dual of the Lie algebra. We define admissibility for nilpotent coadjoint orbits of p-adic reductive Lie groups, and compute the set of admissible orbits for a range of examples. We find that for unitary, symplectic, orthogonal, general...

متن کامل

Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits

Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...

متن کامل

The Orbit Method for the Jacobi Group

g∗ −→ g, λ 7→ Xλ characterized by λ(Y ) =< Xλ, Y >, Y ∈ g. Therefore the coadjoint G-orbits in g∗ may be identified with adjoint G-orbits in g. The philosophy of the orbit method says that we may attach the irreducible unitary representations of G to the coadjoint orbits in g∗. Historically the orbit method that was first initiated by A.A. Kirillov (cf. [K]) early in the 1960s in a real nilpote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008